The Crystal Structures of the Cyclohexyl and Isopropyl Derivatives of Bis- μ-[bis-(η-cyclopentadienyl)hydridomolybdenum]-bis $\{$ di- μ-bromo-[alkylmagnesium] [(diethyl ether)magnesium]\}

By Keith Prout and Roger A. Forder
Chemical Crystallography Laboratory, 9 Parks Road, Oxford OX1 3PD, England

(Received 17 October 1974; accepted 24 October 1974)

Abstract

The structures of the cyclohexyl and isopropyl derivatives of the title complex are described. The cyclohexyl derivative is monoclinic, $a=15 \cdot 671, b=11 \cdot 996, c=15 \cdot 085 \AA, \beta=109 \cdot 55^{\circ}$, space group $C 2 / m$, four-circle diffractometer intensity measurements, Mo $K \alpha$ radiation, 1531 independent reflexions, final $R 0 \cdot 083$. Problems of disorder/space group were encountered. The novel metal cluster system (I) with Mo-Mg bonds ($2 \cdot 85,2 \cdot 74 \AA$) was found.

(I)

An incomplete determination of the structure of the isopropyl derivative (monoclinic, $a=8.566, b=$ $12 \cdot 955, c=18 \cdot 617 \AA, \beta=93 \cdot 9^{\circ}$, space group $P 2_{1} / c$) revealed the same metal-bromine skeleton.

Introduction

During investigations of compounds containing Mo and W bound to light main-group elements Green and his coworkers (Benfield et al., 1974) have obtained crystalline products from the reactions of
$\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MH}_{2}(\mathrm{M}=\mathrm{Mo}$, W) with Grignard reagents, ' RMgBr ', in ethers. X-ray diffraction studies of two products ($\mathrm{M}=\mathrm{Mo}, \mathrm{R}=$ isopropyl and cyclohexyl, diethyl ether solvent) were undertaken to characterize these unusual materials.

The isopropyl derivative was examined first, but crystal decomposition resulted in a data set of poor quality and, combined with apparent severe disorder in the crystal, permitted only a partial structure to be elucidated; the results of this investigation are described in the Appendix. The opportunities for disorder in the cyclohexyl derivative appeared to be more restricted and, although problems on that account were by no means absent, it was possible to put forward a more detailed description of this structure. A preliminary account of this work has been published (Green, Moser, Packer, Petit, Forder \& Prout. 1974).

Experimental

Pale-yellow lath-like crystals from the reaction of $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoH}_{2}$ and the Grignard reagent from cyclohexyl bromide in diethyl ether were supplied by Mr I. Packer and Dr M. L. H. Green. They were excessively sensitive to air and moisture and all manipulations were carried out in an atmosphere of dry nitrogen; crystals were mounted for X-ray examination in nitro-gen-filled glass capillary tubes. It was not possible to measure their density.
After preliminary oscillation and Weissenberg photography, a crystal of approximate dimensions $0.4 \times$ $0.2 \times 0.01 \mathrm{~mm}$ was set up on a Hilger and Watts PDP8-controlled four-circle diffractometer: cell dimensions and orientation matrix were obtained by a least-squares fit to the setting angles of 20 reflexions (Dobler \& Duerr, 1969). The intensities of at least two equivalents of each independent reflexion with $\sin \theta / \lambda<0.7$ were measured by an $\omega / 2 \theta$ scan and ordinate analysis (Watson, Shotton, Cox \& Muirhead, 1970) with 50 steps of 0.02°. The 30 consecutive steps giving the highest total count were treated as peak and the remaining 20 as background. Mo $K \alpha$ radiation
from a graphite monochromator (Bragg angle 6.05°) was used. The intensities of three standard reflexions were monitored at regular intervals so that corrections for crystal decomposition could be made; these intensities decreased by some 15% over the period of the experiment.

Reflexions with $I<3 \sigma(I)$, where $\sigma(I)$ is the standard deviation based on simple counting statistics, or whose apparent centre was more than 0.14° from the predicted position were not included in subsequent calculations. Lorentz and polarization corrections were applied together with an empirical absorption correction (North, Phillips \& Mathews, 1968) to yield a final set of 1531 independent structure amplitudes.

Crystal data

$\left\{\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Mo}(\mathrm{H})\left[\mathrm{MgO}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}\right]\left[\mathrm{MgC}_{6} \mathrm{H}_{11}\right] \mathrm{Br}_{2}\right\}_{2}$.$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}, \mathrm{C}_{44} \mathrm{H}_{74} \mathrm{Br}_{4} \mathrm{Mg}_{4} \mathrm{Mo}_{2} \mathrm{O}_{3}, \quad M=1259 \cdot 8$. Monoclinic, $a=15.671$ (8), $b=11.996$ (5), $c=15.085$ (8) \AA; $\beta=109 \cdot 55(8)^{\circ}, U=2672 \cdot 3 \AA^{3}$. Systematic extinctions $h k l: h+k=2 n+1$. Space group $C 2, C m$ or $C 2 / m$; $C 2 / m$ (No. 12, $C_{2 h}^{3}$) from structure analysis. $D_{c}=$ $1.57 \mathrm{~g} \mathrm{~cm}^{-3}$ for $Z=2$. Mo $K \alpha$ radiation, $\lambda=0.71069 \AA$. $\mu=37 \mathrm{~cm}^{-1}$.

Structure solution and refinement

Patterson and Fourier techniques revealed the Mo, Br and Mg atoms, together with the cyclopentadienyl rings; this partial structure refined well in space group $C 2 / m$ with the Mo and Mg atoms in the mirror plane and one Br atom and a cyclopentadienyl group in general positions. This centrosymmetric group of atoms, containing the bulk of the scattering matter, dictated the choice of the centrosymmetric space group for the structure as a whole. Two further atoms $[\mathrm{C}(1)$ and $\mathrm{O}(1)]$ were also located in the mirror plane at bonding distances from the Mg atoms, but no other atoms were well resolved. However, when displayed in appropriate sections of F_{o} syntheses (Fig. 1), the electron density in the region of $\mathrm{Mg}(1)$ could be interpreted in terms of a cyclohexyl group in the chair conformation with a crystallographic mirror plane.

Fig. 1. $F_{\text {obs }}$ map calculated in mean plane of refined cyclohexyl group. Phases calculated from model from which C(2), C(3) and $\mathrm{C}(4)$ had been deleted. Contours at $0.5 \mathrm{e}^{-3} \AA^{-3}$.

The ligand attached to $\mathrm{Mg}(2)$ is more problematical: Fourier syntheses permitted the location with reasonable certainty of two further atoms, $\mathrm{C}(5)$ and $\mathrm{C}(7)$, bonded to $\mathrm{O}(1)$ and lying in the mirror plane, but the only other features were unresolved smudges of electron density trailing out from these atoms on either side of the mirror. From this and chemical evidence it is proposed that a diethyl ether ligand is present, disordered about the crystallographic mirror plane.

Fourier syntheses also showed the presence of further electron density in a compact region out of bonding contact with the structure described above, which has been interpreted as a disordered molecule of diethyl ether of crystallization. It is apparently planar, perpendicular to the mirror, with the oxygen atom located on the diad axis and the mirror plane approximately bisecting the two $\mathrm{C}-\mathrm{C}$ bonds: it therefore overlaps its own mirror image. It is believed that the true space group is most probably $C 2$, but with such a large proportion of the scattering model adequately represented by space group $C 2 / m$ it is impossible to distinguish this from the disordered model and if the non-centrosymmetric space group were used the refinement would be ill-conditioned.

Refinement was by full-matrix least-squares calculations with constraints (Waser, 1963; Rollett, 1969) applied to ill-resolved structural features. For the cyclohexyl group, unconstrained refinement led to unreasonable bond lengths and a noticeable tendency for the ring to be too flat at the $\mathrm{C}(1)$ end. Accordingly, the $\mathrm{C}-\mathrm{C}$ bond lengths within the ring were constrained to their mean (recalculated between each cycle) with an estimated standard deviation of $0.01 \AA$; a similar procedure, with an e.s.d. of 1°, was adopted for the $\mathrm{C}-\mathrm{C}-\mathrm{C}$ and $\mathrm{Mg}-\mathrm{C}-\mathrm{C}$ angles (taken as one group). These means converged to $1.537 \AA$ and 111.7° respectively, satisfactory values for a cyclohexyl group.

The coordinated ether molecule was even less susceptible to refinement. Bonds $\mathrm{O}(1)-\mathrm{C}(5)$ and $\mathrm{O}(1)-\mathrm{C}(7)$ were constrained to $1.45 \AA$ (e.s.d. $0.01 \AA$), but C(6) and $C(8)$ had to be introduced with zero occupancies and constrained to lie exactly in idealized mean positions in the mirror plane. The ether of crystallization [$O(2)$ and $C(9)]$ was refined without constraint, but with the assumption that carbon atoms adjacent to the oxygen in one molecule fall in the position occupied by the terminal carbon atoms of the molecule related by the mirror plane.

The metal, bromine and cyclopentadienyl carbon atoms were assigned anisotropic temperature factors, whilst all others were refined isotropically, except $\mathrm{C}(6)$ and $C(8)$ where the temperature factor has no relevance. Each reflexion was assigned a weight according to the expression $w^{-1}=1+\left(\left(\left|F_{o}\right|-19\right) / 22\right)^{2}$, chosen to minimize the variation of $w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ with F_{o}. The final R was 0.083 . Complex neutral-atom scattering factors were taken from International Tables for X-ray Crystallography (1962) and all calculations were performed with the Oxford package of crystallographic pro-
grams (Carruthers \& Rollett, 1973) on the Oxford University ICL 1906 A computer.

Results

The final atomic parameters are given in Tables 1 and 2. Bond distances and interbond angles, with estimated standard deviations calculated from the full variancecovariance matrix are given in Table 3 and a projection of the molecule is shown in Fig. 2.*

Table 1. Cyclohexyl derivative: fractional atomic coordinates $\left(\times 10^{4}\right)$ and isotropic temperature factors

	x / a	y / b	z / c	$U_{\text {iso }}$
$\mathbf{M o}$	$1526(1)$	0	$7244(1)$	
Br	$-1237(1)$	$1565(1)$	$5627(1)$	
$\mathbf{M g}(1)$	$-384(5)$	0	$6865(5)$	
$\mathrm{Mg}(2)$	$1849(4)$	0	$5570(4)$	
$\mathrm{C}(1)$	$-869(13)$	0	$8087(13)$	$0 \cdot 09(1)$
$\mathrm{C}(2)$	$-1365(15)$	$1065(9)$	$8182(17)$	$0 \cdot 27(2)$
$\mathrm{C}(3)$	$-1584(18)$	$1056(9)$	$9108(17)$	$0 \cdot 28(2)$
$\mathrm{C}(4)$	$-2120(21)$	0	$9169(23)$	$0 \cdot 19(2)$
$\mathrm{C}(1)$	$3200(12)$	0	$5658(12)$	$0 \cdot 11(1)$
$\mathrm{C}(5)$	$3969(22)$	0	$6527(20)$	$0 \cdot 19(2)$
$\mathrm{C}(6)$	$4867(16)$	0	$6333(56)$	
$\mathrm{C}(7)$	$3492(31)$	0	$4837(23)$	$0 \cdot 20(2)$
$\mathrm{C}(8)$	$2682(54)$	0	$3923(17)$	
$\mathrm{O}(2)$	5000	$1351(63)$	0	$0 \cdot 23(3)$
$\mathrm{C}(9)$	$4423(22)$	$765(29)$	$383(22)$	$0 \cdot 21(1)$
$\mathrm{C}(11)$	$996(13)$	$1684(12)$	$7663(11)$	
$\mathrm{C}(12)$	$1203(11)$	$1869(12)$	$6823(11)$	
$\mathrm{C}(13)$	$2191(10)$	$1690(13)$	$7023(10)$	
$\mathrm{C}(14)$	$2568(14)$	$1342(16)$	$7969(13)$	
$\mathrm{C}(15)$	$1771(13)$	$1335(15)$	$8365(12)$	

Discussion

The molecule represents a novel type of metal cluster compound, the first shown to contain $\mathrm{Mo}-\mathrm{Mg}$ bonds (Fig. 2). Since the isopropyl derivative (see Appendix and Fig. 3) contains the same metal-bromine skeleton, it seems likely that these products are typical of those obtained from the reactions under investigation.

As judged by the length of their bonds to carbon, the covalent radius of Mg is some $0.15 \AA$ greater than

[^0]that of Al , and, since $\mathrm{Mo}-\mathrm{Al}$ single bonds have been observed in the range $2 \cdot 65-2 \cdot 66 \AA$ (Forder \& Prout, $1974 a$), the expected Mo-Mg single-bond distance can be estimated at about $2 \cdot 8 \AA$. Again, in the only other transition metal-magnesium compound whose detailed structure is known, $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ (diphos) $\mathrm{FeMgBr} .3-\mathrm{THF}$ (Felkin et al., 1974), the $\mathrm{Fe}-\mathrm{Mg}$ bond length is $2 \cdot 59 \AA$. Now the covalent radius of Mo is about $0.2 \AA$ greater than that of Fe (by considering, for example, the contacts to η-cyclopentadienyl ligands), so that the same estimate of $2 \cdot 8 \AA$ for $\mathrm{Mo}-\mathrm{Mg}$ is obtained. There is little reason to doubt therefore that $\mathrm{Mo}-\mathrm{Mg}$ distances in the observed range of $2 \cdot 74-2.85 \AA$ represent single, covalent bonds.

The observed approximately tetrahedral coordination of Mg is not uncommon either in Grignard derivatives (see, for example, Stucky \& Rundle, 1964; Guggenberger \& Rundle, 1968) or in other essentially covalent compounds of the element. The double bromine bridge has been observed in
$\left(\mathrm{Et}_{3} \mathrm{~N}\right)\left(\mathrm{Et}^{2}\right) \mathrm{MgBr}_{2} \mathrm{Mg}(\mathrm{Et})\left(\mathrm{NEt}_{3}\right)$ (Toney \& Stucky, 1967) where the $\mathrm{Mg}-\mathrm{Br}$ bond length of $2.57 \AA$ agrees reasonably well with that found in the present work. The $\mathrm{Mg}-\mathrm{C}$ and $\mathrm{Mg}-\mathrm{O}$ distances are in good agreement with the literature values.

Fig. 2. Projection of cyclohexyl derivative at angle of 15° from b.

Table 2. Cyclohexyl derivative: anisotropic temperature factor components ($\times 10^{3}$)

	$T=\exp \left[-2 \pi^{2}\left(h^{2} a^{* 2} U_{11}+\ldots+2 k l b^{*} c^{*} U_{23}+\ldots\right]\right.$					
	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Mo	$84(1)$	$74(1)$	$65(1)$	0	$22(1)$	0
Br	$94(1)$	$68(1)$	$85(1)$	$-5(1)$	$29(1)$	$8(1)$
$\mathrm{Mg}(1)$	$85(4)$	$79(4)$	$76(4)$	0	$33(3)$	0
$\mathrm{Mg}(2)$	$74(4)$	$71(4)$	$79(4)$	0	$30(3)$	0
$\mathrm{C}(11)$	$130(13)$	$73(9)$	$95(10)$	$-17(8)$	$50(10)$	$-8(9)$
$\mathrm{C}(12)$	$105(10)$	$69(8)$	$96(10)$	$-12(7)$	$32(8)$	$-4(8)$
$\mathrm{C}(13)$	$87(9)$	$99(11)$	$89(9)$	$-8(8)$	$31(8)$	$-9(8)$
$\mathrm{C}(14)$	$130(15)$	$101(12)$	$108(12)$	$-27(10)$	$17(11)$	$-18(11)$
$\mathrm{C}(15)$	$122(13)$	$94(11)$	$94(10)$	$-27(9)$	$33(10)$	$-9(10)$

$\mathrm{Mg}(1)$ and $\mathrm{Mg}(2)$ are not only crystallographically but also chemically distinct. Each Mg is bonded to two Br and one Mo, but, whereas at $\mathrm{Mg}(1)$ the fourth ligand is the one-electron donor cyclohexyl carbon atom, at $\mathrm{Mg}(2)$ it is the two-electron donor ether oxygen atom. In consequence, a simple valence-bond formulation of the structure requires an asymmetrical distribution of normal and dative covalent bonds (I), the latter including one of the Mo-Mg bonds. Such a formulation would, of course, be at variance with the 18 -electron rule, which provides a very useful rationalization of much organomolybdenum chemistry, were it not for evidence that there is a further hydrogen atom associated with each Mo. This evidence is both spectroscopic and structural.

The infrared spectrum of the product from $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoH}_{2}$ and cyclohexyl Grignard shows bands at $1740,1720 \mathrm{~cm}^{-1}$ assignable to $v(\mathrm{Mo}-\mathrm{H})$. When the preparation is carried out with $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoD}_{2}$, these bands are absent, but a new band at $1260 \mathrm{~cm}^{-1}$ appears assigned to $v(\mathrm{Mo}-\mathrm{D}) ; v(\mathrm{Mo}-\mathrm{H}) / v(\mathrm{Mo}-\mathrm{D})=$ 1.39 (Green et al., 1974). Structurally, the Mg-MoMg angle of 109° is substantially larger than the acute angles usually found in $d^{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoX}_{2}$ complexes (Prout, Cameron, Forder, Critchley, Denton \& Rees,
1974). This is not an obvious steric requirement of the metal-bromine skeleton and probably results from the hydrogen atom lying in the $\mathrm{Mg}-\mathrm{Mo}-\mathrm{Mg}$ plane, inside the angle. In fact, the situation is very similar to that in $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Mo}(\mathrm{H}) \mathrm{Li}\right]_{4}$ (Forder \& Prout, 1974b) where the $\mathrm{Li}-\mathrm{Mo}-\mathrm{Li}$ angle is 99°. This similarity extends to the geometry of the $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ Mo groups: in the present work the Mo was found to lie $1.95 \AA$ from the mean planes of the cyclopentadienyl rings and the angle between ring normals was 146°, the corresponding values in the Li compound being $1.90-1.93 \AA$ and $148-149^{\circ}$. These values are significantly different from those found in more typical $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoX}_{2}$ complexes.

The significant differences in the lengths of the $\mathrm{Mg}-\mathrm{Mo}$ and $\mathrm{Mg}-\mathrm{Br}$ bonds at $\mathrm{Mg}(1)$ and $\mathrm{Mg}(2)$ may reflect this electronic asymmetry. However, a molecule of the form (I) has symmetry C_{i} whereas the molecule found was unavoidably constrained to have the higher $C_{2 h}$ symmetry by the choice of the space group $C 2 / m$. Neither of the alternative space groups $C 2$ and Cm could have led to a molecule of symmetry C_{i}.

We thank the Science Research Council for financial support of this work.

Table 3. Cyclohexyl derivative: bond distances (\AA) and interbond angles $\left({ }^{\circ}\right)$

Symmetry-operator superscripts: i $x,-y, z$; ii $1-x, y,-z$; iii $-x, y, 1-z$; iv $-x,-y, 1-z$.			
Mo-Mg(1)	2.853 (7)	$\mathrm{Mo}-\mathrm{Mg}(2)$	2.737 (6)
$\mathrm{Mg}(1)-\mathrm{Br}$	$2 \cdot 670$ (5)	$\mathrm{Mg}(2)-\mathrm{Br}^{\text {ill }}$	$2 \cdot 559$ (4)
Mo--C(11)	$2 \cdot 31$ (1)	$\mathrm{C}(11)-\mathrm{C}(12)$	1.43 (2)
Mo--C(12)	$2 \cdot 34$ (2)	C(12)-C(13)	1.49 (2)
Mo--C(13)	$2 \cdot 35$ (2)	C(13)-C(14)	$1 \cdot 41$ (2)
Mo--C(14)	$2 \cdot 29$ (2)	C(14)-C(15)	1.55 (3)
Mo--C(15)	$2 \cdot 27$ (2)	$\mathrm{C}(15)-\mathrm{C}(11)$	1.37 (2)
$\mathrm{Mg}(1)-\mathrm{C}(1)$	$2 \cdot 22$ (2)	$\mathrm{Mg}(2)-\mathrm{O}(1)$	2.08 (2)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.53*	$\mathrm{O}(1)-\mathrm{C}(5)$	1.45*
$\mathrm{C}(2)-\mathrm{C}(3)$	1.55*	$\mathrm{O}(1)-\mathrm{C}(7)$	1-46*
C(3)-C(4)	1-54*	$\mathrm{C}(5)-\mathrm{C}(6)$	1.53*
$\mathrm{O}(2)-\mathrm{C}(9)$	$1 \cdot 41$ (5)	$\mathrm{C}(7)-\mathrm{C}(8)$	1.53*
$\mathrm{C}(9)-\mathrm{C}(9)^{\text {i }}$	$1 \cdot 84$ (7)	$\mathbf{M g}(1) \cdots \mathrm{Mg}(2)$	3.623 (9)
$\mathrm{Mg}(1)-\mathrm{Mo}--\mathrm{Mg}(2)$	108.7 (4)	$\mathrm{Mg}(1)-\mathrm{Br}-\mathrm{Mg}\left(2^{\text {iii }}\right)$	87.7 (2)
$\mathrm{Mo}-\mathrm{Mg}(1)-\mathrm{Br}$	112.7 (3)	$\mathrm{Mo}-\mathrm{Mg}(2)-\mathrm{Br}^{111}$	$120 \cdot 6$ (3)
$\mathrm{Mo}--\mathrm{Mg}(1)-\mathrm{C}(1)$	$117 \cdot 5$ (14)	$\mathrm{Mo}-\mathrm{Mg}(2)-\mathrm{O}(1)$	$116 \cdot 1$ (14)
$\mathrm{Br}--\mathrm{Mg}(1)-\mathrm{Br}^{1}$	89.4 (2)	$\mathrm{Br}^{\mathrm{Hi}}$ - $-\mathrm{Mg}(2)-\mathrm{Br}^{\text {i }}$	94.4 (6)
$\mathrm{Br}-\mathrm{Mg}(1)-\mathrm{C}(1)$	$110 \cdot 5$ (15)	$\mathrm{Br}^{\text {III }}-\mathrm{Mg}(2)-\mathrm{O}(1)$	$100 \cdot 3$ (17)
$\mathrm{Mg}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	114*	$\mathrm{Mg}(2)-\mathrm{O}(1)-\mathrm{C}(5)$	125 (2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}\left(2^{1}\right)$	114*	$\mathrm{Mg}(2)-\mathrm{O}(1)-\mathrm{C}(7)$	123 (2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	111*	$\mathrm{C}(5)-\mathrm{O}(1)-\mathrm{C}(7)$	111 (3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	110*	$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	111*
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}\left(3^{1}\right)$	111*	$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	111*
$\mathrm{C}(9)-\mathrm{O}(2)-\mathrm{C}\left({ }^{(11)}\right)$	120 (10)	$\mathrm{O}(2)-\mathrm{C}(9)-\mathrm{C}(9)^{1}$	120 (7)

Table 4. Isopropyl derivative: bond distances (\AA) and interbond angles $\left({ }^{\circ}\right)$

Mo-- $\mathrm{Mg}(1)$	2.76 (3)	$\mathrm{Mo}-\mathrm{Mg}(2)$	2.81 (3)
$\mathrm{Mg}(1)-\operatorname{Br}(1)$	$2 \cdot 58$ (3)	$\mathrm{Mg}(2)-\mathrm{Br}(1)$	$2 \cdot 61$ (3)
$\mathbf{M g}(1)-\operatorname{Br}(2)$	$2 \cdot 51$ (3)	$\mathrm{Mg}(2)-\mathrm{Br}(2)$	$2 \cdot 59$ (3)
$\mathrm{Mg}(1)-\mathrm{Mo}-\mathrm{Mg}(2)$	104 (2)	$\mathrm{Mg}(1)-\mathrm{Br}(1)-\mathrm{Mg}(2)$	86 (1)
$\mathrm{Mo}-\mathrm{Mg}(1)-\operatorname{Br}(1)$	118 (2)	$\mathrm{Mg}(1)-\mathrm{Br}(2)-\mathrm{Mg}(2)$	88 (1)
$\mathrm{Mo}-\mathrm{Mg}(1)-\mathrm{Br}(2)$	120 (2)	$\mathrm{Mo}-\mathrm{Mg}(2)-\mathrm{Br}(1)$	118 (2)
$\mathrm{Br}(1)-\mathrm{Mg}(1)-\mathrm{Br}(2)$	94 (3)	$\underset{\mathrm{Mo}}{ }-\mathrm{Mg}(2)-\mathrm{Br}(2)$	113 (2)

APPENDIX

Yellow crystals from the reaction of $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoH}_{2}$ and the Grignard reagent from isopropyl bromide in diethyl ether were supplied by Dr D. M. Roe and Dr M. L. H. Green. Experimental work proceeded in the same manner as for the cyclohexyl derivative and the following crystal data were obtained.

Monoclinic, $a=8.566$ (8), $b=12.955$ (12), $c=18.617$ (15) $\AA, \beta=93.9(1)^{\circ}, \quad U=2064 \cdot 5 \AA^{3}$. Systematic extinctions $h 0 l: l=2 n+1 ; 0 k 0: k=2 n+1$. Space group $P 2_{1} / c . Z=2$ ($\left[\mathrm{MoMg}_{2} \mathrm{Br}_{2}\right]_{2}$ units). Mo $K \alpha$ radiation, $\lambda=0.71069 \AA$.

Considerable crystal decomposition resulted in high background scatter, and only 723 independent observed reflexions were measured. Patterson and Fourier methods located Mo, Mg and Br atoms in a skeleton closely similar to that of the cyclohexyl compound, except that, although lying about a centre, it lacks mirror symmetry; there are thus two refinable Br atoms. Cyclopentadienyl groups were placed with difficulty and an atom apparently bound to each Mg was found, but the remainder of these ligands could not confidently be placed. Least-squares refinement of this partial structure (Fig. 3), with anisotropic Mo and Br atoms and bond lengths and angles within the cyclopentadienyl groups constrained to $1.41 \AA$ and 108° respectively, converged to $R=0 \cdot 14$. Principal bond lengths and angles are given in Table 4.

References

Benfield, F. W., Francis, B. R., Green, M. L. H., Luong-Thi, N-T., Moser, G., Poland, J. S. \& Roe, D. M. (1974). J. Less-Common Metals, 36, 187-192.

Carruthers, J. R. \& Rollett, J. S. (1973). Personal communication.
Dobler, M. \& Duerr, B. (1969). Personal communication.
Felkin, H., Knowles, P. J., Meunier, B., Mitschler, A., Ricard, L. \& Weiss, R. (1974). Chem. Commun. p. 44.

Forder, R. A. \& Prout, K. (1974a). Acta Cryst. B30, 23122317.

Fig. 3. Projection of isopropyl derivative at angle of 15° from normal to $\mathrm{Mg}(1)-\mathrm{Mo}-\mathrm{Mg}(2)$ plane.

Forder, R. A. \& Prout, K. (1974b). Acta Cryst. B30, 2318-2322.
Green, M. L. H., Moser, G. A., Packer, I., Petit, F., Forder, R. A. \& Prout, K. (1974). Chem. Commun. pp. 839-840.
Guggenberger, L. J. \& Rundle, R. E. (1968). J. Amer. Chem. Soc. 90, 5375-5378.
International Tables for X-ray Crystallography (1962). Vol. III, pp. 202-203, 212, 216. Birmingham: Kynoch Press.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A 24, 351-359.
Prout, K., Cameron, T. S., Forder, R. A., Critchley, S. R., Denton, B. \& Rees, G. V. (1974). Acta Cryst. B30, 2290-2304.
Rollett, J. S. (1969). In Crystallographic Computing, edited by F. R. Ahmed, pp. 169-172. Copenhagen: Munksgaard.
Stucky, G. \& Rundle, R. E. (1964). J. Amer. Chem. Soc. 86, 4825-4830.
Toney, J. \& Stucky, G. D. (1967). Chem. Commun. pp. 1168-1169.
Watson, H. C., Shotton, D. M., Cox, J. M. \& Mutrhead, H. (1970). Nature, Lond. 225, 806-811.

WASER, J. (1963). Acta Cryst. 16, 1091-1094.

[^0]: * A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 30751 (16pp., 1 microfiche). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH11NZ, England.

